Flow-driven formation of solid-like microsphere heaps†
نویسندگان
چکیده
We observe the formation of heaps of repulsive microspheres, created by flowing a colloidal microsphere suspension towards a flat-topped ridge placed within a quasi two-dimensional microfluidic channel. This configuration allows for both shear and normal forces on the microspheres in contact with the ridge. The heaps, which are formed against the ridge, are characterized by two distinct phases: a solid-like bulk phase in the interior and a highly fluctuating, liquid-like state which exists along its leading edge. We observe that heaps only form above a critical flow velocity, vc, and that they are destroyed by thermal rearrangements when the flow ceases. We monitor the dynamics of heap formation using fluorescence video microscopy, measuring the heap volume and the angle of repose in response to microsphere deposition and erosion processes. We find that the steady state angle of repose, qf, increases as a function of inflow velocity, vN, with a functional form qff ffiffiffiffiffiffiffiffiffiffiffiffiffiffi vN ‒ vc p .
منابع مشابه
Nonlinear elasticity of microsphere heaps.
Thermal fluctuations, geometric exclusion, and external driving all govern the mechanical response of dense particulate suspensions. Here, we measure the stress-strain response of quasi-two-dimensional flow-stabilized microsphere heaps in a regime in which all three effects are present using a microfluidic device. We observe that the elastic modulus and the mean interparticle separation of the ...
متن کاملDiscrete Particle Simulation of Granular Flow
Granular materials, which can be either wet or dry and range from nanometers to centimetres in size, are widely encountered in industries and in nature. As with solids, they can withstand deformation and form heaps; as with liquids, they can flow; as with gases, they exhibit compressibility. These features give rise to another state of matter that is poorly understood (Ennis et al., 1994; Jaege...
متن کاملNumerical study of a combined convection flow in a cavity filled with nanofluid considering effects of diameter of nanoparticles and cavity inclination angles
The present paper focuses on problem of mixed convection fluid flow and heat transfer of Al2O3-water nanofluid with temperature and nanoparticles concentration dependent thermal conductivity and effective viscosity inside Lid-driven cavity having a hot rectangular obstacle. The governing equations are discretized using the finite volume method while the SIMPLER algorithm is employed to couple v...
متن کاملA Numerical Study of the Effect of Aspect Ratio on Heat Transfer in an Annular Flow Through a 270-Degree Curved Pipe.
In the present paper, a three dimensional annular developing incompressible laminar flow through 270- degree curved pipe is numerically simulated. The dimensionless governing equations of continuity, momentums and energy are driven in toroidal coordinates. The governing equations are discretized by projection algorithm using forward difference in time and central difference in space. A three-di...
متن کاملThe growth of a Super Stable Heap : an experimental and numerical study
– We report experimental and numerical results on the growth of a super stable heap (SSH). Such a regime appears for flows in a thin channel and for high flow rate : the flow occurs atop a nearly static heap whose angle is stabilized by the flowing layer at its top and the side wall friction. The growth of the static heap is investigated in this paper. A theoretical analysis inspired by the BRC...
متن کامل